Abstract

This study deals with the cyclic oxidation behaviour of thermal barrier coating systems. The systems consist of an yttria-stabilised zircona ceramic top coat deposited by EB-PVD, a β-(Ni,Pt)Al bond coat and a Ni-based superalloy. Two different superalloys are studied: a first-generation one and a fourthgeneration one containing Re, Ru and Hf. The aim of this work is to characterise the microstructural evolution of those systems and to correlate it to their resistance to spallation. Thermal cycling is carried out at 1100°C in laboratory air, with the number of cycles ranging between 10 and 1000. Each cycle consists of a 1 h dwell followed by forced-air cooling for 15 min down to room temperature. Among the main results of this work, it is shown that the MCNG-based system is significantly more resistant to spallation than the AM1-based one. Up to 50 cycles, both systems exhibit similar oxidation rate and phase transformations but major differences are observed after long-term ageing. In particular, a Ru-rich β-phase is formed in the bond coat of the MCNG-based system while the AM1- based one undergoes strong rumpling of the TGO/bond coat interface due to the loss of the thermal barrier coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.