Abstract

AbstractFriction stir welding of AA 7075 plates in three different thicknesses such as 10, 16 and 25 mm at natural convection condition was carried out successfully without defects. Water cooled friction stir welds were also produced on 16 mm thick plates. The thermal cycles at different locations of the plate, during the friction stir welding process, were predicted using a three‐dimensional thermal model. Mechanical properties of the welds were evaluated using tensile and hardness tests. Weld microstructures were also examined with optical and transmission electron microscopes. The weld hardness values and tensile properties were found to decrease with increase in plate thickness. The use of water cooling was found to improve the weld properties to some extent, although not to the level of base metal. The reasons for this behavior are discussed, correlating thermal cycles, mechanical properties, fracture locations and precipitate morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.