Abstract

The influence of two multiarm star polymers, hyperbranched poly(glycidol)-b-poly(e-caprolactone) of different arm lengths, on the thermal curing and the photocuring of a diglycidyl ether of bisphenol A epoxy resin (DGEBA) is studied. Star polymer with short arms PCL-10 decelerates more the thermal curing than the polymer with long arms PCL-30 because the latter is less solubilized in the epoxy matrix and its effect on the polymerization of the resin and the thermal–mechanical properties is less important. The kinetic triplet corresponding to the thermal curing of the different formulations has been determined. In the analysis of the photocuring process, we have also found that short-arm star PCL-10 is better solubilized in the epoxy matrix and its effect on the photocuring kinetics is more significant than that of the long-arm star. The effect of both polymers on the thermal–mechanical properties of the cured thermosets is less important due to the lower solubility at the relatively low photocuring temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.