Abstract

This communication focuses on assessing the effectiveness of nanoparticles, and a power-law variation fluid on a moving stretching surface is analyzed. Newtonian fluids for different nanomaterials are considered due to its industrial demand. The partial differential equations describing the flow are transformed to ordinary differential equations by employing local similarity transformations and then solved numerically by an effective numerical approach, namely, the local nonsimilarity method (LNS). The numerical solution is computed for different parameters by using the computational software MATLAB. Different types of nanoparticles are considered, and the impact of those nanoparticles as well as the impact of different pertaining parameters on velocity, temperature, missing velocity slope, and missing temperature slope are presented graphically. Comparisons are made with the available results in the open literature. Our investigation conveys a better impact on {text{Ag}} nanoparticles due to their higher thermal conductivity. Furthermore, an increase in the free stream velocity, missing temperature slope and velocity slope is enhanced, but after a point of separation, the missing temperature slope decays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call