Abstract
Abstract Detailed studies of the azimuthal structure of fully developed waves in a differentially heated rotating fluid annulus have been carried out with the aid of instrumentation capable of providing frequent determinations of the temperature variation around a circle concentric with the walls of the annulus. Owing to the cyclic nature of the data they are conveniently analyzed in terms of azimuthal Fourier modes. The time-averaged azimuthal spectra thus obtained show that in the regular regime, where the flow is dominated by a single mode of wavenumber M, say, significant “energy” is found not only in the harmonics required to describe the jet stream structure of the flow but also in the sideband modes of wavenumber M=1 which describe the observed azimuthal modulations in the amplitude and/or phase of the wave. At the high-wavenumber end of those spectra for which an inertial subrange can be resolved the “spectral energy” follows a (wavenumber)−3 law. The time-dependent behavior of the phases of the s...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.