Abstract

By substituting the Cattaneo-Christov heat-flow model for the more usual parabolic Fourier law, we consider the impact of hyperbolic heat-flow effects on thermal convection in the classic problem of a magnetized conducting fluid layer heated from below. For stationary convection, the system is equivalent to that studied by Chandrasekhar (Hydrodynamic and Hydromagnetic Stability, 1961), and with free boundary conditions we recover the classical critical Rayleigh number [Formula: see text] which exhibits inhibition of convection by the field according to [Formula: see text] as [Formula: see text], where Q is the Chandrasekhar number. However, for oscillatory convection we find that the critical Rayleigh number [Formula: see text] is given by a more complicated function of the thermal Prandtl number [Formula: see text], magnetic Prandtl number [Formula: see text] and Cattaneo number C. To elucidate features of this dependence, we neglect [Formula: see text] (in which case overstability would be classically forbidden), and thereby obtain an expression for the Rayleigh number that is far less strongly inhibited by the field, with limiting behaviour [Formula: see text], as [Formula: see text]. One consequence of this weaker dependence is that onset of instability occurs as overstability provided C exceeds a threshold value CT(Q); indeed, crucially we show that when Q is large, [Formula: see text], meaning that oscillatory modes are preferred even when C itself is small. Similar behaviour is demonstrated in the case of fixed boundaries by means of a novel numerical solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.