Abstract

Understanding the role of heteroatoms in carbon dots (CDs) has been recognized as a critical factor for the design and engineering of their optical properties. Oxygen is one of the most prevalent heteroatom defects in CDs; however, its effects on the optical properties are still unclear because it has not been possible to precisely control the degree of oxidation of CDs. Here, we report the synthesis of CDs in a controlled process that allows thermal control of the oxygen content using benzyl alcohol as an oxidizing solvent. The results suggest that oxygen-induced defects reduce the optical band gap of CDs, and their emission is red-shifted from blue (428 nm) to red (628 nm). The photoexcited charge-carrier dynamics of the CDs were thoroughly studied using transient absorption spectroscopy and fluorescence decay measurements. Furthermore, the bright multicolored emission of our CDs renders them suitable for sun-like panchromatic indoor lighting applications. We believe that these new insights into oxygen-induced defects in CDs will result in significant progress in their practical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.