Abstract

A study is conducted on cooling and controlling the thickness of a frozen layer of deuterium and tritium (D-T) on the inner surface of a capsule mounted in a cylindrical hohlraum. Cooling is required to remove the heat released during tritium decay. The layer thickness must be uniform, which requires that the heat flow from the layer into the capsule wall be spherically symmetric. It is shown that this requirement can be satisfied by controlling the temperature rise along the hohlraum wall from the ends to the midplane. The optimum temperature rise depends primarily on the D-T fuel charge and the thermal conductivity of the gas filling the hohlraum. To ensure a layer thickness variation of less than ±0.4 μm in a plastic capsule, the temperature rise along the hohlraum wall must be controlled to an accuracy of about ±3.0 mK. However, as the thermal conductivity of the capsule wall increases to metallic material values, the required accuracy of the hohlraum wall temperature rise decreases to ±15 mK.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.