Abstract

Shape distortions and hot cracking during casting are strongly related to thermal contraction during and after solidification. The understanding of this phenomenon is crucial in designing defect-free cast products and in numerical simulation of their thermomechanical behavior. This paper presents the results of experimental and numerical simulation work on the thermal contraction during and after solidification of a commercial AA5182 alloy. In the specially developed experimental set-up, the contraction is measured simultaneously with temperature while the material solidifies and cools down in the solid state. An elasto-viscoplastic constitutive model fitted to experimental data is used in finite element simulations of the contraction process. The implementation of thermal contraction data for ingot distortion during the start-up phase of casting is also included. The results show that the contraction starts at a certain temperature in the nonequilibrium solidification range, close to the non-equilibrium solidus. Good agreement is found between simulation and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call