Abstract

The influence of variations of interface temperature in the range 50–300 K on the thermal contact conductance between aluminium and stainless steel joints was determined. Predictions were done by modeling the deformation at the interface for different values of surface finish and contact pressure over the range of interface temperatures. Both elastic and plastic deformation was considered. Experiments were carried out in a closed loop cryostat and the results were shown to compare well with the predictions. A reduction of the interface temperature resulted in a smaller value of thermal contact conductance. Interfacial pressure variation had much lower influence at the smaller value of temperatures. The role of surface roughness at the contact was also seen to be less significant at lower interface temperatures and the zone of hysteresis was smaller. A correlation was developed for estimating thermal contact conductance at joints over this temperature range. An explicit dependence of contact conductance on temperature was not seen to be necessary as long as the changes in the hardness and thermal conductivity of the material with temperature are incorporated in the correlation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call