Abstract
Polysaccharide-surfactant blends are widely used in foods. However, their possible mutual interactions have not been extensively studied. The purpose of this work was to examine how the anionic surfactant sodium stearoyl lactylate (SSL) affects different properties of κ-carrageenan solutions and gels. Rheometry, differential scanning calorimetry, asymmetrical flow field-flow fractionation coupled with multiangle laser light scattering, among others, were used to determine the flow and viscoelastic behavior, thermal transitions, and conformation changes, respectively. Interference caused by SSL is postulated as the primary factor to explain the variations in the conformation of κ-carrageenan in gels and solutions. However, electrostatic repulsions between κ-carrageenan and SSL can also be involved. These latter interactions are more important for high SSL concentrations (13 mmol dm−3) without addition of KCl, because of the higher net negative charge density of the system. SSL significantly modifies the properties of κ-carrageenan in aqueous media.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.