Abstract
In this study, intrinsic ZnO powder was sintered and intercalated with particles. The resulting powder, along with a commercial p-type product, was consolidated into bulk materials, and their thermal conductivity was measured across a temperature range of 350 K to 700 K. The thermal conductivity of the commercial p-type ZnO was found to be lower than that of intrinsic ZnO, attributed to controlled doping. Notably, our demonstration illustrated that the thermal conductivity can be reduced by a factor of 5-10 in the presence of AlZn2O4 and ZnP2 precipitates. This methodology presents a feasible approach for the future design of ZnO-based thermoelectric materials, particularly for thermal heat scavenging applications.
.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.