Abstract

AbstractZirconia doped with yttrium, widely known as yttria‐stabilized zirconia (YSZ), has found recent applications in advanced electronic and energy devices, particularly when deposited in thin film form by atomic layer deposition (ALD). Although ample studies reported the thermal conductivity of YSZ films and coatings, these data were typically limited to Y2O3 concentrations around 8 mol% and thicknesses greater than 1 μm, which were primarily targeted for thermal barrier coating applications. Here, we present the first experimental report of the thermal conductivity of YSZ thin films (∼50 nm), deposited by plasma‐enhanced ALD (PEALD), with variable Y2O3 content (0–36.9 mol%). Time‐domain thermoreflectance measures the effective thermal conductivity of the film and its interfaces, independently confirmed with frequency‐domain thermoreflectance. The effective thermal conductivity decreases from 1.85 to 1.22 W m−1 K−1 with increasing Y2O3 doping concentration from 0 to 7.7 mol%, predominantly due to increased phonon scattering by oxygen vacancies, and exhibits relatively weak concentration dependence above 7.7 mol%. The effective thermal conductivities of our PEALD YSZ films are higher by ∼15%–128% than those reported previously for thermal ALD YSZ films with similar composition. We attribute this to the relatively larger grain sizes (∼23–27 nm) of our films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call