Abstract

We measured the in-plane thermal conductivity of suspended few-layer graphene flakes by a modified T-bridge technique from 300 K to below 100 K. The thermal conductivities at room temperature are 389, 344, 302, and 596 W/m K for 2-, 3-, 4-, and 8-layer graphene, respectively. The thinner (2-, 3-, 4-layer) graphene samples did not show any clear thickness dependence, while the thicker (8-layer) sample clearly has higher thermal conductivity. In situ current annealing was used to remove polymer residues from the central portion of the 3- and 8-layer graphene samples, as confirmed by electrical transport measurements and post-experiment characterization by Raman and scanning electron microscopy, although some residues still remained near both ends (heater and heat sink). Comparing the 2, 3, and 4-layer samples suggests the annealing had little effect near room temperature but leads to increased thermal conductivity at low temperature. These results also show that the thermal conductivities of suspended few-layer graphene are higher than those of encased few-layer graphene of similar thickness measured previously [Jang et al., Nano Lett. 10, 3909 (2010)].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call