Abstract

The hot-wire method was applied to experimentally determine the thermal conductivity (TC) of a silica nanoparticle powder. A fitting model was further employed to analyze the experimental results and to predict the TC over a wider porosity scale. Results show that the effective TC of the silica-nanoparticle powder can be less than that of free air because of the low TC of both the silica nanoparticles and the air confined in the pore spaces; the relative contribution of the nanoparticle TC, the confined air TC, and the radiation heat transfer coefficient to the effective TC will significantly affect at which porosity the extreme value of the effective TC occurs; the porosity obtained when the contribution to the effective TC of the confined air equals that of the nanoparticles is the most favorable for constructing thermal insulation materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.