Abstract

Owing to their very large piezoelectric coefficients and spontaneous polarizations, (Sc,Y)xAl1−xN alloys have emerged as a new class of III-nitride semiconductor materials with great potential for high-frequency electronic and acoustic devices. The thermal conductivity of constituent materials is a key parameter for design, optimization, and thermal management of such devices. In this study, transient thermoreflectance technique is applied to measure the thermal conductivity of ScxAl1−xN and YxAl1−xN (0 ≤x ≤0.22) layers grown by magnetron sputter epitaxy in the temperature range of 100–400 K. The room-temperature thermal conductivity of both alloys is found to decrease significantly with increasing Sc(Y) composition compared to that of AlN. We also found that the thermal conductivity of YxAl1−xN is lower than that of ScxAl1−xN for all studied compositions. In both alloys, the thermal conductivity increases with the temperature up to 250 K and then saturates. The experimental data are analyzed using a model based on the solution of the phonon Boltzmann transport equation within the relaxation time approximation. The contributions of different phonon-scattering mechanisms to the lattice thermal conductivity of (Sc,Y)xAl1−xN alloys are identified and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.