Abstract

The objective of this study is to re-examine the classical parallel and classical series models of the effective thermal conductivity of porous media and review the underlying assumptions used to develop these asymptotic models. The Langmuir shape factor concept is introduced to gain insight into these classical models and add extra degrees of freedom to formulate semi-empirical correlations for the effective thermal conductivity based on the parallel, series, and combination of parallel and series heat flow configurations. The analytical models reveal the average areas of the heat flow as potential targets for curve fitting equations with fitting parameters. Experimental data for sintered porous copper were used to calibrate the theoretical models. Correlations for the effective thermal conductivity, Langmuir shape factors, average heat conduction areas, and the average lengths of the heat transfer pathway of the two phases as functions of porosity were obtained and compared graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.