Abstract

PbTe is a leading thermoelectric material at intermediate temperatures, largely thanks to its low lattice thermal conductivity. However, its efficiency is too low to compete with other forms of power generation. This efficiency can be effectively enhanced by designing nanostructures capable of scattering phonons over a wide range of length scales to reduce the lattice thermal conductivity. The presence of grain boundaries can reduce the thermal conductivity to $\sim 0.5$ Wm$^{-1}$K$^{-1}$ for small vacancy concentrations and grain sizes. However, grains anneal at finite temperature, and equilibrium and metastable grain size distributions determine the extent of the reduction in thermal conductivity. In the present work, we propose a phase-field model informed by molecular dynamics simulations to study the annealing process in PbTe and how it is affected by the presence of grain boundaries and voids. We find that the thermal conductivity of PbTe is reduced by up to 35\% in the porous material at low temperatures. We observe that a phase transition at a finite density of voids governs the kinetics of impeding grain growth by Zener pinning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.