Abstract

The thermal conductivity (λ) of nanoconfined polyamide-6,6 (PA) oligomers in polymer–graphene nanocomposites has been investigated by reverse nonequilibrium molecular dynamics (RNEMD) simulations. The preferential alignment of the PA chains parallel to the graphene plane as well as their elongation implies that λ of the polymer in nanocomposites is larger than that in the neat polymer system. The ordering of the polymer phase is enhanced in an arrangement of charged graphene surfaces made of one layer with a charge deficit and one with a charge excess. The consequence of the enhanced polymer ordering as well as the denser packing is an increase in λ in the polymer network. Differences in the thermal conductivity for an armchair and zigzag arrangement of the graphene sheets in the direction of the heat transfer are almost negligible. In contrast with this insensitivity, the present RNEMD simulations predict the largest value of λ for composites with the smallest number of PA chains between adjacent graphene sheets. The modifications in the polymer thermal conductivity are rationalized via several structural parameters such as PA bond orientation relative to the graphene sheets, end-to-end distance of polymer chains, and density profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call