Abstract

We report the thermal conductivity of π-stacked metallophthalocyanine nanowires using the thermal bridge method. In the temperature range of 20–300 K, the thermal conductivity of copper phthalocyanine nanowires (CuPc NWs) and iron phthalocyanine nanowires (FePc NWs) increases with temperature and reaches a peak value at around T = 40 K, then decreases at a higher temperature following T−1 behavior. For three FePc NWs, the peak values are 7.1 ± 1.21, 8.3 ± 1.33, and 7.6 ± 1.42 Wm−1 K−1, respectively. The peak thermal conductivity is 6.6 ± 0.67 and 6.6 ± 0.51 Wm−1 K−1 for the two CuPc nanowires. The thermal conductivity of FePc NWs is slightly larger than that of CuPc NWs, which is believed to result from the different mass of metal atoms in the phthalocyanine centers, indicating a phonon mass-difference scattering effect. Meanwhile, the thermal contact conductance of the FePc-Pt interface is measured, which will benefit from a better understanding of the thermal transport across dissimilar interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.