Abstract

We study the dependence of the thermal conductivity of single-walled nanotubes on chirality, isotope impurity, tube length, and temperature by nonequilibrium molecular-dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also found that the tube length dependence of thermal conductivity is different for nanotubes of different radii at different temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call