Abstract

The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity (k⊥) of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The k⊥ of PNCs with thickness from 37 nm to 1.34 μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The k⊥ values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.