Abstract

We study the magnetic and lattice contributions to the thermal conductivity of electrically insulating strongly spin-orbit coupled magnetically ordered phases on a two-dimensional honeycomb lattice using the Kitaev-Heisenberg model. Depending on model parameters, such as the relative strength of the spin-orbit induced anisotropic coupling, a number of magnetically ordered phases are possible. In this work, we study two distinct regimes of thermal transport depending on whether the characteristic energy of the phonons or the magnons dominates, and focus on two different relaxation mechanisms, boundary scattering and magnon-phonon scattering. For spatially anisotropic magnetic phases, the thermal conductivity tensor can be highly anisotropic when the magnetic energy scale dominates, since the magnetic degrees of freedom dominate the thermal transport for temperatures well below the magnetic transition temperature. In the opposite limit in which the phonon energy scale dominates, the thermal conductivity will be nearly isotropic, reflecting the isotropic (at low temperatures) phonon dispersion assumed for the honeycomb lattice. We further discuss the extent to which thermal transport properties are influenced by strong spin-orbit induced anisotropic coupling in the local moment regime of insulating magnetic phases. The developed methodology can be applied to any 2D magnon-phonon system, and more importantly to systems where an analytical Bogoliubov transformation cannot be found and magnon bands are not necessarily isotropic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.