Abstract

The thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been determined from imposed heat flux non-equilibrium molecular dynamics (NEMD) simulations using a previously published quantum chemistry-based atomistic potential. The thermal conductivity was determined in the temperature domain 550⩽ T⩽800 K, which corresponds approximately to the existence limits of the liquid phase of HMX at atmospheric pressure. The NEMD predictions, which comprise the first reported values for thermal conductivity of HMX liquid, were found to be consistent with measured values for crystalline HMX. The thermal conductivity of liquid HMX was found to exhibit a much weaker temperature dependence than the shear viscosity and self-diffusion coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.