Abstract

The thermal conductivity of post-perovskite (ppv), the highest-pressure polymorph of MgSiO3 in the Earth's mantle, is one of the most important transport properties for providing better constraints on the temperature profile and dynamics at the core-mantle boundary (CMB). Incorporation of Fe into ppv can affect its conductivity, which has never been experimentally investigated. Here we determined the lattice thermal conductivities of ppv containing 3 mol% and 10 mol% of Fe at high P-T conditions – of pressures up to 149 GPa and 177 GPa, respectively, and temperatures up to 1560 K – by means of the recently developed pulsed light heating thermoreflectance technique combining continuous wave heating lasers. We found that the incorporation of Fe into ppv moderately reduces its lattice thermal conductivity as it increases the Fe content. The bulk conductivity of ppv dominant pyrolite is estimated as 1.5 times higher than that of pyrolite consisting of bridgmanite and ferropericlase in the lower mantle, which agrees with the traditional view that ppv acts as a better heat conductor than bridgmanite in the Earth's lowermost mantle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call