Abstract

In this Letter, the thermal conductivity of defective graphene is investigated by using non-equilibrium molecular dynamics simulations. It is found that various defects including single vacancy, double vacancy and Stone–Wales defects can greatly reduce the thermal conductivity of graphene. The amount of reduction depends strongly on the density and type of defects at small density level. However, at higher defect density level, the thermal conductivity of defective graphene decreases slowly with increasing defect density and shows marginal dependence on the defect type. The thermal conductivity is found to become less sensitive to temperature with increasing defect density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.