Abstract

[1] The pressure dependence of thermal conductivity () in Earth's lower mantle is poorly understood, resulting in very uncertain values in the D″. Using orthorhombic CaGeO3 perovskite as an analogue for MgSiO3 perovskite, we measured in a multi-anvil apparatus using the Angstrom method at pressures of 8, 10, 14 and 18 GPa, and temperatures of 573–1073 K. We find the pressure dependence of thermal conductivity for orthorhombic perovskite shows a somewhat higher slope than that predicted by Debye theory, and account for this by relating phonon velocities to the bulk modulus, rather than to the Debye temperature. From this relation, we estimate the thermal conductivity of MgSiO3 perovskite at the top and bottom of the D″ to be 3.3 W/m K and 2.2 W/m K, corresponding to values of 6.4 W/m K and 4.5 W/m K for the mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.