Abstract

We analytically derive the transport tensor of thermal conductivity in an ultracold, but not yet quantum degenerate, gas of Bosonic lanthanide atoms using the Chapman-Enskog procedure. The tensor coefficients inherit an anisotropy from the anisotropic collision cross section for these dipolar species, manifest in their dependence on the dipole moment, dipole orientation, and $s$-wave scattering length. These functional dependences open up a pathway for control of macroscopic gas phenomena via tuning of the microscopic atomic interactions. As an illustrative example, we analyze the time evolution of a temperature hot spot which shows preferential heat diffusion orthogonal to the dipole orientation, a direct consequence of anisotropic thermal conduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call