Abstract

The Al2O3–ZrO2 composite ceramics were prepared by slip casting in plaster molds and sintering at 1350°C in air. The composition of prepared samples varied from pure alumina to doped zirconia (3Y‐TZP) with steps of 10 vol%. The relative density of the sintered samples varied from 94% to 98%, depending on the composition. Thermal diffusivity of sintered samples was measured by means of the xenon flash method at 100°C, 200°C, 400°C, 600°C, 800°C, and 1000°C and thermal conductivities were calculated based on measured bulk densities and specific heat data and finally corrected for porosity effects. As expected, the thermal conductivity decreased with increasing zirconia content, and in the case of samples with higher alumina content, it also decreased with increasing temperature. Effective thermal conductivities are close to the lower Hashin–Shtrikman bound and the recently proposed sigmoidal average. Empirical relations were used to fit the dependence of effective thermal conductivity of Al2O3–ZrO2 composite ceramics on both composition and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.