Abstract

Thermal diffusivity and specific heat of 4H-SiC crystals as a function of temperature are measured, respectively, from room temperature to 600 °C. The thermal conductivity normal to c-axis was calculated from the measured data for both N-type and V-doped semi-insulating (SI) 4H-SiC single crystals. The thermal conductivity of N-type sample normal to c axis is proportional to T−1.26. It is approximately 280 W/mK at the room temperature. For V-doped SI sample, the thermal conductivity is proportional to T−1.256 and it is about 347 W/mK at room temperature, bigger than that of N-type sample. For semiconductor materials, total thermal conductivity is the sum of the contributions of lattice and carrier thermal conductivities. Temperature dependent Raman spectrum showed that the life time of phonons for N-type sample is shorter than that for SI sample. Accordingly thermal conductivity contributions from both lattice and carrier components are relatively small for N-type sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.