Abstract

The thermal conductivities of InGaAs/InGaAsP superlattices with different period lengths were measured from 100 to 320 K using 3θ method. In this temperature range, the thermal conductivities were found to decrease with an increase in temperature. For the period length-dependant thermal conductivity, the minimum value does exist at a certain period length, which demonstrates that at a short period length, superlattice thermal conductivity increases with a decrease in the period length. When the period is longer than a certain period length, the interface thermal resistance dominates in phonon transport. The experimental and theoretical results confirmed the previous predictions from the lattice dynamics analysis, i.e. with the increase in period length, the dominant mechanisms of phonon transport in superlattices will shift from wave mode to particle mode. This is crucial for the cutoff of the phonons and lays a sound foundation for the design of superlattice structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.