Abstract
Thermal conductivity of polymer fibers in the axial direction has been extensively studied while thermal conductivity in the radial direction Λ remains unknown. In this work, polymer fibers with different molecular arrangements (crystalline, liquid crystalline, and amorphous) were plastically deformed. Λ was measured at engineering strains ε = 0.2-2.3 using time-domain thermoreflectance. Λ decreases with increasing strains for polyethylene (PE) and poly(p-phenylene-2,6-benzobisoxazole) (PBO) fibers and is independent of strain for poly(methyl methacrylate) (PMMA) fibers. The extrapolated thermal conductivity at zero strain is Λ0 ≈ 0.27 Wm-1 K-1 for crystalline PE, Λ0 ≈ 0.29 Wm-1 K-1 for liquid crystalline PBO, and Λ0 ≈ 0.18 Wm-1 K-1 for amorphous PMMA. Λ of PE drops to Λ ≈ 0.14 Wm-1 K-1 at ε = 1.9; Λ of PBO drops to Λ ≈ 0.12 Wm-1 K-1 at ε = 2.1. We attribute the decrease of Λ with ε in crystalline and liquid crystalline fibers to structural disorder induced by plastic deformation. The combination of structural disorder and phonon focusing effects produces a thermal conductivity in deformed PE and PBO fibers that is lower than amorphous PMMA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.