Abstract
The thermal conductivity of self-assembled nanocomposite oxide films consisting of cobalt ferrite (CFO) spinel pillars grown within a single-crystal bismuth ferrite (BFO) perovskite matrix is described as a function of the volume fraction of the spinel. Single phase BFO and CFO had cross-plane thermal conductivities of 1.32 W m−1 K−1 and 3.94 W m−1 K−1, respectively, and the thermal conductivity of the nanocomposites increased with the CFO volume fraction within this range. A small increase (∼5%) in thermal conductivity for the pure CFO phase in the AC-demagnetized state was observed, suggesting possible magnon contributions. Steady state gray-medium based variance-reduced Monte Carlo simulations show consistent trends with experimental data on the dependence of thermal conductivity with the CFO volume fraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.