Abstract
Advancements in technology related to energy systems, such as heat exchangers, electronics, and batteries, are associated with the generation of high heat fluxes which requires appropriate thermal management. Presently, conventional thermal fluids have found limited application owing to low thermal conductivity (TC). The need for more efficient fluids has become apparent leading to the development of nanofluids as advanced thermal fluids. Nanofluid synthesis by suspending nano-size materials into conventional thermal fluids to improve thermal properties has been extensively studied. TC is a pivotal property to the utilization of nanofluids in various applications as it is strongly related to improved efficiency and thermal performance. Numerous studies have been conducted on the TC of nanofluids using diverse nanoparticles and base fluids. Different values of TC enhancement have been recorded which depend on various factors, such as nanoparticles size, shape and type, base fluid and surfactant type, temperature, etc. This paper attempts to conduct a state-of-the-art review of the TC enhancement of metal oxide nanofluids owing to the wide attention, chemical stability, low density, and oxidation resistance associated with this type of nanofluid. TC and TC enhancements of metal oxide nanofluids are presented and discussed herein. The influence of several parameters (temperature, volume/weight concentration, nano-size, sonication, shape, surfactants, base fluids, alignment, TC measurement techniques, and mixing ratio (for hybrid nanofluid)) on the TC of metal oil nanofluids have been reviewed. This paper serves as a frontier in the review of the effect of alignment, electric field, and green nanofluid on TC. In addition, the mechanisms/physics behind TC enhancement and techniques for TC measurement have been discussed. Results show that the TC enhancement of metal oxide nanofluids is affected by the aforementioned parameters with temperature and nanoparticle concentration contributing the most. TC of these nanofluids is observed to be actively enhanced using electric and magnetic fields with the former requiring more intense studies. The formulation of green nanofluids and base fluids as sustainable and future thermal fluids is recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.