Abstract

In this Paper, Five Fundamental Effective Thermal Conductivity Structural Models (Series, Parallel, Two Forms of Maxwell-Eucken and Effective Medium Theory) Were Used to Analyze and Design Silicon Nitride Porous Ceramics. Then α-Si3N4Matrix Porous Ceramics Were Prepared with ZrP2O7as a Binder and Thermal Conductivity of ZrP2O7Bonded Si3N4Porous Ceramic Was Evaluated. ZrP2O7Bonded Si3N4Porous Ceramic Had Open and Interconnected Pore Structure which is either in EMT or in Maxwell-Euken 2. The Thermal Conductivity of ZrP2O7Bonded Si3N4Porous Ceramics Changes from 2.0 to 0.5 W/m•K with Increasing the Porosity from 20% to 51%. The Obtained Results Showed that the External Porosity Material with Maxwell-Euken 2 Structure Had the Lowest Thermal Conductivity in All Porous Materials. The Open and Interconnected Pore Structure of ZrP2O7Bonded Si3N4Porous Ceramics Provided much Lower Thermal Conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.