Abstract

Boundary layer analysis is invoked to clarify the aspects of variable thermal conductivity and thermophoretic forces on a steady state of MHD micropolar fluid flow in the existence of a uniform transverse magnetic field along an isothermal horizontal plate. The micropolar pattern permits the rotational freedom degrees that lead to couple stresses and a non symmetric stress tensor. The initiated PDEs governing the case pattern are mutated into a non-dimensional system due to proper transformations. The transformed mathematical governing equations are solved by implementing a very potent computer algebra software MATLAB code. The plotted graphs analyzed the attitude of multiple physical aspects involving factors on the flow attitude of micropolar velocity and angular velocity and temperature. Through the involved factors, the couple stress, skin friction and Nusselt number are manifested and interpreted amply. A new outcome for drag force and heat gradient experienced by the key factors is portrayed. Augmentation in Ω results in the thermophoretic forces that encapsulate the mass transmission. The local Nusselt number strengthened as the thermal conductivity, heat absorption factors or wall suction velocity were improved, and weakened due to the existence of viscous dissipation or heat generation impacts. As a particular case, the governing field equations of a classical Newtonian liquid are given by dropping the micropolar parameter impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.