Abstract

ABSTRACTNovel rare earth boron icosahedral compounds are investigated as potential high temperature thermoelectric materials. REB50-type compounds and a homologous series of RE-B-C(N) compounds were synthesized and the thermal conductivity and thermoelectric properties measured. Seebeck coefficients in excess of 200 μV/K are observed at temperatures above 1000 K for the REB50-type compounds. Strikingly, n-type behavior was observed for REB22C2N and REB17CN. Up to now, non-doped B12 icosahedral compounds like boron carbide have all been p-type. The discovery of an n-type compound is extremely important in terms of the potential development of this class of compounds as viable thermoelectric materials. Low thermal conductivities of κ < 0.03 W/cm/K at room temperature was observed for these rare earth boron cluster compounds. In comparison among the homologous series in which there are rare earth and B6 octahedra layers separated by an increasing number of B12 icosahedra layers, we observe that the thermal conductivity actually increases as the number of boron cluster layers increases. We find that the rare earth B12 icosahedral cluster compounds in which RE atoms occupy voids among the clusters generally appear to have lower thermal conductivity than boron cluster compounds which do not contain RE atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call