Abstract

In this study, the thermal transport properties for various geometries of monolayer h-BN/h-AlN superlattice nanoribbons are investigated using non-equilibrium molecular dynamics simulations. In this context, the lattice thermal conductivities of the superlattice nanoribbons are obtained for different period lengths, geometries, sample lengths, and temperatures. Results reveal that a decrease in the thermal conductivities of superlattice nanoribbons when compared with those of the pristine nanoribbons, the lattice thermal conductivities decrease with decreasing sample lengths and increasing temperatures, also the formation of the extremum points resulting from the competition between wave-like and particle-like phonon transport in the thermal conductivity of superlattice nanoribbons with the change of the period lengths. Moreover, superlattice nanoribbons with different geometries are created to connect the h-BN/h-AlN interface, and it is observed that there is a difference between the thermal conductivities calculated in the reverse directions. This difference leads to thermal rectification in the superlattice structures. As the asymmetry between thermal contact areas increases especially at low temperatures, it is found out the thermal rectification ratio increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call