Abstract

Multilayer coatings were prepared using small-particle plasma spray to investigate the effect of interfaces on thermal conductivity and phase stability. Monolithic and multilayer alumina and yttria partially-stabilized zirconia coatings, with 0, 3, 20, and 40 interfaces in 200–380 μm thick coatings were studied. Thermal conductivity was determined for the temperature range 25 °C to 1200 °C using the laser flash method and differential scanning calorimetry. Thermal conductivity of the multilayer coatings was accurately modeled by a series heat transfer equation, indicating that interfacial resistance plays a negligible role in heat transfer in the direction perpendicular to the coating plane. Powder X-ray diffraction results indicate that identical phase transitions occur in all the coatings. Independent of coating microstructure (i.e. layer thickness), as-sprayed γ-Al_2O_3 transforms to α-Al_2O_3 after 100 hours at 1200°C; as-sprayed metastable t′–ZrO_2 converts to a mixture of t–ZrO_2 and c–ZrO_2 after 100 hours at 1300 °C. Thus, the results indicate that the interfaces do not aid in stabilizing the as-sprayed phases after prolonged severe heat treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.