Abstract

The bulk properties of uranium dioxide (UO2) have been investigated using Hubbard corrected density functional theory (DFT + U) calculations. Monitoring of the occupation matrix for 5f electrons of the uranium atoms is found to be crucial to avoid metastable state solutions and consequently to obtain the true ground state properties of bulk UO2. The lattice contribution to the thermal conductivity was obtained by the solution of the Boltzmann transport equation for phonons based on the interatomic force constants obtained from DFT + U calculations. Furthermore, the relative stabilities of noble gases (He, Ne, Ar, Kr, and Xe) in the octahedral interstitial site of bulk UO2 and their migration are revisited. The effect of the supercell approach for point defects is taken into account by considering the long-range elastic interactions. The computed incorporation energies and energy barriers indicate a size-dependent mechanism for the interstitial migration of noble gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.