Abstract

Accurate information on heat transfer and temperature distribution in metal foams is necessary for design and modelling of thermal-hydraulic systems incorporating metal foams. The analysis of heat transfer requires determination of the effective thermal conductivity as well as the thermal contact resistance (TCR) associated with the interface between the metal foam and the adjacent surfaces/layers. In this study, a test bed that allows the separation of effective thermal conductivity and TCR in metal foams is described. Measurements are performed in a vacuum under varying compressive loads using ERG Duocel aluminium foam samples with different porosities and pore densities. Also, a graphical method associated with a computer code is developed to demonstrate the distribution of contact spots and estimate the real contact area at the interface. Our results show that the porosity and the effective thermal conductivity remain unchanged with the variation of compression in the range 0–2 MPa; but TCR decreases significantly with pressure due to an increase in the real contact area at the interface. Moreover, the ratio of real to nominal contact area varies between 0 and 0.013, depending upon the compressive force, porosity, pore density and surface characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call