Abstract

AbstractPolystyrene (PS) was compounded with graphite that possesses high thermal conductivity and layer structures, and the PS/graphite thermal conductive nano‐composites were prepared. Thermal conductivity of PS improved remarkably in the presence of the graphite, and a much higher thermal conductivity of 1.95 W/m K can be achieved for the composite with 34 vol% of colloidal graphite. The Maxwell‐Eucken model and the Agari model were used to evaluate the thermal conductivity of the composites. For the purpose of improving the interfacial compatibility of PS/graphite, realizing the exfoliation and nano‐dispersion of graphite in the PS matrix, three intercalation methods, including rolling intercalation, solvent intercalation, and pan milling intercalation, were applied to prepare the composites, and the morphologies, thermal conductivities, and mechanical properties of the composites were investigated. It should be noted that the one prepared by pan milling intercalation not only had excellent thermal conductivity but also much higher mechanical properties, resulting from a high degree of layer exfoliation of the graphite, the formation of the chain structure agglomerates of the graphite, and the creation of more conductive paths under the strong shear stress of pan milling. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.