Abstract
The rapid development of large generators to high voltage and large capacity calls for high thermal conductivity and excellent insulation for their insulation. In this work, a hexagonal boron nitride (h-BN) thermal conductive network is firstly constructed. The thermal conductivity network in mica paper exhibits a three-dimensional structure, and mica tape composites was prepared with glass fabric, epoxy and mica paper above. Accordingly, a typical mica paper and mica tape have thermal conductivities of 1.07 W/(m·K) and 0.416 W/(m·K), respectively, which are 157.21 % and 75.53 % higher than those without filling. A modified thermal conductivity model (LN-SSS model) is proposed to analyze the thermal conductivity of the mica tape composites, which is found to fit the mica tape's experiment value and tendency accurately, and the mica tape composites have excellent insulation properties. The design approach in this paper also provides new ideas for insulating materials and structures with high thermal conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.