Abstract

Heat flow, bottom-hole temperature (BHT), and thermal conductivity data are used to evaluate the present thermal conditions in the Anadarko basin. Heat flow values decrease from 54-62 mWm{sup {minus}2} in the northern part of the basin to 39-53 mWm{sup {minus}2} in the southern portion of the basin. The variation in the regional conductive heat flow is controlled by basin geometry and by the distribution of radiogenic elements in the basement. The heat flow, thermal conductivity, and lithologic information were combined to construct a 3-D model of the temperature structure of the Anadarko basin. The highest temperatures sedimentary rocks older than Pennsylvanian are offset 35 km north-northwest of the deepest part of the basin. This offset is related to the regional increase in heat flow to the north and to the presence of high thermal conductivity granite wash adjacent to the Wichita Mountains. A plot of the temperature difference between the equilibrium temperatures estimated from the model and the measured BHTs as a function of depth is remarkably similar to the published correction curve for BHTs for wells in Oklahoma. Vitrinite reflectance and apatite fission-track (FT) data are used to estimate the paleogeothermal conditions in the basin. Published vitrinite reflectance valuesmore » are consistent with a past geographic temperature distribution comparable to the observed distribution with the maximum values offset from the basin axis. FT analysis of sandstones from wells in the southeastern portion of the basin indicates that subsurface temperatures were at least 30C higher than at present, suggest the possibility of substantial erosion in this area.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.