Abstract

Bifacial fabrics, with a single jersey on one face and a plain weave on the other, were produced on a purpose-built machine. Thermal comfort properties of bifacial fabrics were compared with conventional woven and knitted fabrics and the effect of weft density and loop length of bifacial fabrics on their thermal comfort properties was investigated. While different fabric structures were produced with the same wool, acrylic, and polyester yarns, the findings confirmed that the bifacial fabric is warmer (lower total heat loss) and more breathable (higher permeability index ( im)) than the corresponding woven and knitted fabrics. Increasing the loop length of bifacial fabrics enhanced evaporative resistance, air permeability, warm feeling, thermal resistance, and water vapor permeability index, yet reduced total heat loss. An increase in the weft density of bifacial fabrics led to higher evaporative resistance, warmer feeling, higher thermal resistance, lower air permeability, and total heat loss. However, the permeability index did not change with an increase in weft density. This study suggests that thermal comfort properties of bifacial fabrics can be optimized by modifying structural parameters to engineer high-performance textiles.

Highlights

  • IntroductionWith a single jersey on one face and a plain weave on the other, were produced on a purpose-built machine

  • Bifacial fabrics, with a single jersey on one face and a plain weave on the other, were produced on a purpose-built machine

  • We have reported that the evaporative resistance of bifacial fabrics is slightly higher than that of comparable knitted and woven fabrics, and water spreading and absorption on the woven face of bifacial fabrics are quicker than that on their knitted face.[12]

Read more

Summary

Introduction

With a single jersey on one face and a plain weave on the other, were produced on a purpose-built machine. While different fabric structures were produced with the same wool, acrylic, and polyester yarns, the findings confirmed that the bifacial fabric is warmer (lower total heat loss) and more breathable (higher permeability index (im)) than the corresponding woven and knitted fabrics. Increasing the loop length of bifacial fabrics enhanced evaporative resistance, air permeability, warm feeling, thermal resistance, and water vapor permeability index, yet reduced total heat loss. An increase in the weft density of bifacial fabrics led to higher evaporative resistance, warmer feeling, higher thermal resistance, lower air permeability, and total heat loss. The permeability index (im), as defined by the relationship between thermal resistance and evaporative resistance, is generally used to determine the thermal comfort properties or breathability of fabrics. While the correlation between air permeability and permeability index is positive, correlation between the permeability index and the other variables is negative

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.