Abstract

Energy transport in diffusion-wave fields is gradient-driven and therefore diffuse, yielding depth-integrated responses with poor axial resolution. Using matched-filter principles, we propose a methodology enabling these parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave fields. This not only improves axial resolution but also allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field of depth-resolved subsurface thermal coherence tomography using diffusion waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.