Abstract
Molybdenum oxide (MoOx) has been used as a suitable interfacial modifier for emergent solar cells. However, the relatively low electrical conductivity of such material requires a thickness less than 10 nm of MoOx, which may lead to an uncovered surface and reduce the effect of interfacial modification. In this work, MoO3 and Au powder were co-evaporated and MoOx:Au composite coatings with a thickness of 10–20 nm were obtained. They are highly transparent, more compact and conductive, and contain a higher percentage of MoO2 compound than MoOx films without Au. The composite films were co-evaporated on top of the hole transport layer (Spiro-MMeOTAD) in perovskite solar cells (PSCs). The insertion of a MoOx:Au composite film, with a thickness of 14.3 nm and an atomic concentration of 34% of Au, improves photovoltaic performance and stability of PSCs after 1000 h of storage in ambient conditions. It is concluded that a relatively thick MoOx:Au layer can work as an interfacial modifier to reduce the humidity and oxygen diffusion into perovskite layer and, at the same time, improve the charge transport in PSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.