Abstract

The effect of coadsorbed oxygen on the thermal chemistry of diiodomethane on Ni(1 1 0) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). I 3d and C 1s XPS data indicated that adsorbed diiodomethane undergoes two sequential C–I bond scission steps to ultimately produce methylene surface species, the same as on clean Ni(1 1 0). Moreover, significant amounts of methane and other heavier hydrocarbons are produced after further thermal activation of those chemisorbed methylene groups. The production of alkanes and alkenes, which is accounted for by a chain growth mechanism where the initial hydrogenation of some adsorbed methylene to methyl moieties is followed by a rate-limiting methylene insertion step to yield ethyl intermediates, is inhibited but not fully blocked by the coadsorbed oxygen. New reaction pathways are also opened up by the presence of oxygen in this system, including a direct coupling of two methylene groups to ethene, the insertion of an oxygen atom into a nickel–methylene group to produce formaldehyde, and a parallel methylene insertion chain growth sequence starting from a CH 2I ads intermediate to ultimately yield C 3H 5 and C 4H 7 unsaturated gas-phase radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.