Abstract
Poly(ethylene glycol)–poly(d,l-lactide) (PEG–PDLLA) block copolymers were prepared by anionic ring-opening polymerization, resulting in block sizes effectively controlled by initial monomer/initiator ratios and low molecular weight distributions (<1.12). A pyrene derivative (1-pyrenyl carbonyl cyanide—Py) was conjugated to the end of the hydrophobic block (PDLLA) in a quantitative manner, with coupling efficiencies >95%. The so-obtained PEG–PDLLA–Py copolymers displayed fluorescent properties that were associated with the pyrene monomers, when placed in good solvents for both the hydrophilic and hydrophobic blocks. When placed in selective solvents, these copolymers self-assembled into micelles in the 30-nm range, also with low particle size distributions (<0.09), within which Py could be readily entrapped in the hydrophobic PDLLA core. Py entrapment resulted in the formation of excimers, as evident from fluorescence measurements. Observation of excimer formation/dissociation further conveyed information on the physicochemical properties of the core. Thermal characterization of these systems showed that an increase in the temperature resulted in changes in the properties of excimer fluorescence, an occurrence attributed to a higher mobility of the otherwise glassy PDLLA. This, in turn, greatly affected the inter-molecular distance between pyrene molecules, a crucial factor for excimer formation. The glass transition of the PDLLA block, ∼38 °C, defined the onset for increasing chain mobility and whence excimer dissociation. Excimer fluorescence appeared to be time-dependent. Based on these observations, chain exchange processes were clearly evidenced through the time-dependent dissociation of excimers into unimers, a process that was influenced by changes in temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.