Abstract

We have performed a numerical and experimental analysis of the thermal behavior of electrically injected microdisk lasers that are defined in an InGaAsP-based thin film bonded on top of a silicon wafer. Both the turn-on as well as the pulsed-regime temperature evolution in the lasing region was simulated using the finite-element method. The simulation results are in good agreement with experimental data, which was extracted from the broadening of the time-averaged emission spectra. Lasing at room temperature was only possible in pulsed regime due to the high thermal resistance (10 K/mW). Some strategies to decrease the thermal resistance of the microdisk lasers are proposed and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.